

 Navigation

 	
 index
	
 modules |
	
 next |
	
 previous |
	WAeUP.Kofa 1.8.2.dev0 Documentation »
	Contents »
	Developer Handbook »
	API »
	browser – Viewing Components Package »

 Previous topic

 browser.pages - Pages (Views)

 Next topic

 browser.reports - Reports Components

 This Page

 	Show Source

 Quick search

 Enter search terms or a module, class or function name.

browser.pdf - PDF Views¶

Reusable components for pdf generation.

	
class waeup.kofa.browser.pdf.A3LandscapePDFCreator[source]¶
	Bases: waeup.kofa.browser.pdf.LandscapePDFCreator

A utility to help with generating PDF docs in
A3 landscape format. No watermark is shown.

	
__doc__ = 'A utility to help with generating PDF docs in\n A3 landscape format. No watermark is shown.\n '¶
	

	
__module__ = 'waeup.kofa.browser.pdf'¶
	

	
pagesize = (1190.551181102362, 841.8897637795275)¶
	

	
waeup.kofa.browser.pdf.CODE_STYLE = <ParagraphStyle 'Code'>¶
	A reportlab paragraph style for output of ‘code’.

	
waeup.kofa.browser.pdf.ENTRY1_STYLE = <ParagraphStyle 'Entry1'>¶
	A reportlab paragraph style for regular form output.

	
waeup.kofa.browser.pdf.HEADING3_STYLE = <ParagraphStyle 'Heading3'>¶
	A reportlab paragraph style for ‘normal’ output.

	
waeup.kofa.browser.pdf.HEADING_STYLE = <ParagraphStyle 'Heading3'>¶
	A reportlab paragraph style for headings.

	
waeup.kofa.browser.pdf.HEADLINE1_STYLE = <ParagraphStyle 'Header1'>¶
	A reportlab paragraph style for headlines or bold text in form output.

	
class waeup.kofa.browser.pdf.LandscapePDFCreator[source]¶
	Bases: waeup.kofa.browser.pdf.PDFCreator

A utility to help with generating PDF docs in
landscape format.

	
__doc__ = 'A utility to help with generating PDF docs in\n landscape format.\n '¶
	

	
__module__ = 'waeup.kofa.browser.pdf'¶
	

	
pagesize = (841.8897637795275, 595.275590551181)¶
	

	
class waeup.kofa.browser.pdf.LetterPDFCreator[source]¶
	Bases: waeup.kofa.browser.pdf.PDFCreator

A utility to help with generating PDF docs with an original letterhead.

	
__doc__ = 'A utility to help with generating PDF docs with an original letterhead.\n '¶
	

	
__module__ = 'waeup.kofa.browser.pdf'¶
	

	
letterhead_pos = [0, 0]¶
	

	
paint_background(canvas, doc)[source]¶
	Paint letterhead background of a PDF.

The doc is expected to be some reportlab SimpleDocTemplate
or similar object.

This is a callback method that will be called from reportlab
when creating PDFs with create_pdf().

	
waeup.kofa.browser.pdf.NORMAL_STYLE = <ParagraphStyle 'Normal'>¶
	A reportlab paragraph style for ‘normal’ output.

	
waeup.kofa.browser.pdf.NOTE_STYLE = <ParagraphStyle 'Note'>¶
	A reportlab paragraph style for notes output at end of documents.

	
class waeup.kofa.browser.pdf.NumberedCanvas(*args, **kw)[source]¶
	Bases: reportlab.pdfgen.canvas.Canvas

A reportlab canvas for numbering pages after all docs are processed.

Taken from
http://code.activestate.com/recipes/546511-page-x-of-y-with-reportlab/
http://code.activestate.com/recipes/576832/

	
__doc__ = 'A reportlab canvas for numbering pages after all docs are processed.\n\n Taken from\n http://code.activestate.com/recipes/546511-page-x-of-y-with-reportlab/\n http://code.activestate.com/recipes/576832/\n '¶
	

	
__init__(*args, **kw)[source]¶
	

	
__module__ = 'waeup.kofa.browser.pdf'¶
	

	
draw_page_number(page_count)[source]¶
	draw string at bottom right with ‘page x of y’.

Location of the string is determined by canvas attributes
kofa_footer_x_pos and kofa_footer_y_pos that have to be
set manually.

If this canvas also provides an attribute kofa_footer_text,
the contained text is rendered left of the page x of y
string.

	
save()[source]¶
	add page info to each page (page x of y)

	
showPage()[source]¶
	

	
class waeup.kofa.browser.pdf.PDFCreator[source]¶
	Bases: grokcore.component.components.GlobalUtility

A utility to help with generating PDF docs.

	
__doc__ = 'A utility to help with generating PDF docs.\n '¶
	

	
__implemented__ = <implementedBy waeup.kofa.browser.pdf.PDFCreator>¶
	

	
__module__ = 'waeup.kofa.browser.pdf'¶
	

	
__provides__¶
	Special descriptor for class __provides__

The descriptor caches the implementedBy info, so that
we can get declarations for objects without instance-specific
interfaces a bit quicker.

For example:

>>> from zope.interface import Interface
>>> class IFooFactory(Interface):
... pass
>>> class IFoo(Interface):
... pass
>>> class C(object):
... implements(IFoo)
... classProvides(IFooFactory)
>>> [i.getName() for i in C.__provides__]
['IFooFactory']

>>> [i.getName() for i in C().__provides__]
['IFoo']

	
classmethod _addCourse(table_data, row_num, course_label, course_link, lang, domain)[source]¶
	Add course data to table_data.

	
classmethod _addDeptAndFaculty(table_data, row_num, dept, faculty, lang, domain)[source]¶
	Add dept and faculty as table rows to table_data.

dept and faculty are expected to be strings or None. In
latter case they are not put into the table.

	
classmethod _drawSignatureBoxes(canvas, width, height, signatures=[])[source]¶
	Draw signature boxes into canvas.

	
_getWidgetsTableData(widgets, separators, domain, lang, twoDataCols)[source]¶
	

	
classmethod _setUpWidgets(form_fields, context)[source]¶
	Setup simple display widgets.

Returns the list of widgets.

	
_substitute_markers(text)[source]¶
	If text contains some marker, substitute it.

Markers are standard library string template placeholders. See
https://docs.python.org/2/library/string.html and
string.Template for details. Roughly, placeholders look like
${some_marker}.

	Valid markers:
		test_signature_img_path – path to signature image stored in
	test_signature_img_path` attribute.

	
create_pdf(data, headerline=None, title=None, author=None, footer='', note=None, sigs_in_footer=[], topMargin=1.5, letterhead_path=None, view=None)[source]¶
	Returns a binary data stream which is a PDF document.

	
classmethod fromStringList(string_list)[source]¶
	Generate a list of reportlab paragraphs out of a list of strings.

Strings are formatted with CODE_STYLE and a spacer is
appended at end.

	
classmethod getImage(image_path, orientation='LEFT')[source]¶
	Get an image located at image_path as reportlab flowable.

	
getWidgetsTable(form_fields, context, view, lang='en', domain='waeup.kofa', separators=None, course_label=None, course_link=None, dept=None, faculty=None, colWidths=None, twoDataCols=False)[source]¶
	Return a reportlab Table instance, created from widgets
determined by form_fields and context.

		form_fields
	is a list of schema fields as created by grok.AutoFields.

		context
	is some object whose content is rendered here.

		view
	is currently not used but supposed to be a view which is
actually rendering a PDF document.

		lang
	the portal language. Used for translations of strings.

		domain
	the translation domain used for translations of strings.

		separators
	a list of separators.

		course_label and course_link
	if a course should be added to the table, course_label
and course_link can be given, both being strings. They
will be rendered in an extra-row.

		dept and faculty
	if these are given, we render extra rows with faculty and
department.

		colWidths
	defines the the column widths of the data in the right column
of base data (right to the passport image).

		twoDataCols
	renders data widgets in a parent table with two columns.

	
header_logo_left_path = None¶
	

	
header_logo_path = None¶
	

	
logo_left_pos = [0, 0, 0]¶
	

	
logo_pos = [0, 0, 0]¶
	

	
pagesize = (595.275590551181, 841.8897637795275)¶
	

	
paint_background(canvas, doc)[source]¶
	Paint background of a PDF, including watermark, title, etc.

The doc is expected to be some reportlab SimpleDocTemplate
or similar object.

Text of headerline is extracted from doc.kofa_headtitle, the
document title (under the head) from doc.kofa_title.

This is a callback method that will be called from reportlab
when creating PDFs with create_pdf().

	
test_signature_img_path = '/kofa/demo/src/waeup/kofa/browser/static/test_signature.png'¶
	

	
watermark_path = None¶
	

	
watermark_pos = [0, 0]¶
	

	
waeup.kofa.browser.pdf.SIGNATURE_TABLE_STYLE = [('VALIGN', (0, -1), (-1, -1), 'TOP'), ('BOTTOMPADDING', (0, 0), (-1, 0), 36), ('TOPPADDING', (0, -1), (-1, -1), 0)]¶
	Base style for signature tables

	
waeup.kofa.browser.pdf.SMALL_PARA_STYLE = <ParagraphStyle 'Small1'>¶
	A reportlab paragraph style for smaller form output.

	
waeup.kofa.browser.pdf.format_html(html)[source]¶
	Make HTML code usable for use in reportlab paragraphs.

Main things fixed here:
If html code:
- remove newlines (not visible in HTML but visible in PDF)
- add
 tags after <div> (as divs break lines in HTML but not in PDF)
- replace tags (as lists are not supported by reportlab)

The link tag must not be used in html coded text. Use a tags instead.

If not html code:
- just replace newlines by
 tags

	
waeup.kofa.browser.pdf.format_signatures(signatures, max_per_row=3, lang='en', single_table=False, date_field=True, date_text=u'Date', base_style=[('VALIGN', (0, -1), (-1, -1), 'TOP'), ('BOTTOMPADDING', (0, 0), (-1, 0), 36), ('TOPPADDING', (0, -1), (-1, -1), 0)])[source]¶
	

	
waeup.kofa.browser.pdf.get_qrcode(text, width=60.0)[source]¶
	Get a QR Code as Reportlab Flowable (actually a Drawing).

width gives box width in pixels (I think)

	
waeup.kofa.browser.pdf.get_sig_tables(signatures, lang='en', max_per_row=3, horizontal=None, single_table=False, landscape=False)[source]¶
	

	
waeup.kofa.browser.pdf.get_signature_tables(signatures, lang='en', max_per_row=3, horizontal=None, single_table=False, landscape=False)[source]¶
	Get a list of reportlab flowables representing signature fields.

signatures is a list of signatures. Each signature can be a
simple string or a tuple of format:

(<PRE-TEXT>, <SIGNATURE>, <POST-TEXT>)

where <PRE-TEXT> and <POST-TEXT> are texts that should
appear on top (PRE) or below (POST) the signature cell. Both
formats, string and tuple, can be mixed. A single signature would
be given as [('Pre-Text', 'Signature', 'Post-Text'),] or
simply as ['Signature'] if not pre or post-text is wanted.

All texts (pre, sig, post) are rendered as paragraphs, so you can
pass in also longer texts with basic HTML formatting like ,
<i>,
, etc.

lang sets the language to use in I18n context. All texts are
translated to the given language (en by default) if a
translation is available.

max_per_row gives the maximum number of signatures to put into
a single row. The default is 3. If more signatures are passed in,
these signatures are put into a new row. So, for example by
default 8 signatures would be spread over 3 rows.

horizontal tells how the single signature cells should be
rendered: horizontal or vertical. While horizontal cells render
date and signature fields side by side, in vertical cells date is
rendered on top of the signature.

This parameter accepts three different values: True,
False, or None. While with True each cell is rendered
in horizontal mode, False will create only vertical cells.

The None value (set by default) is different: if set, the mode
will be dependent on the number of signatures per row. If a row
contains exactly one signature (because only one sig was passed
in, or because max_per_row was set to 1), then this
signature is rendered in horizontal mode. Otherwise (with more
than one sig per row) each cell is rendered in vertical mode. This
pseudo-smart behaviour can be switched off by setting
horizontal explicitly to True or False.

single_table is a boolean defaulting to False. By default
we return the rows of a signature table in several tables, one of
each row. This makes it easier for reportlab to perform pagebreaks
in case the page is already full, without wasting space. If the
parameter is set to True, then always a list with exactly one
table is returned, which will contain all rows in one table.

Generally, if a row contains only one signature, only a part of
the page width is used to render this signature. If two or more
signatures are passed in, the complete page width will be filled
and the single signature cells will be shrinked to fit.

	
waeup.kofa.browser.pdf.horiz_signature_cell(signature, date_field=True, date_text=u'Date', start_row=0, start_col=0)[source]¶
	Generate a table part containing an horizontal signature cell

Returns the table data as list of lists and an according style.

	signature:
	a signature tuple containing (<PRE-TEXT, SIGNATURE-TEXT, POST-TEXT>)
	date_field:
	boolean indicating that a ‘Date:’ text should be rendered into this
signature cell (or not).
	date_text:
	the text to be rendered into the signature field as ‘Date:’ text.
	start_row:
	starting row of the signature cell inside a broader table.
	start_col:
	starting column of the signature cell inside a broader table.

Horizontal signature cells look like this:

+------------+---+-----------+
|Pre text possibly filling |
|the whole box |
+------------+---+-----------+
| | | |
| | | |
+------------+---+-----------+
| ---------- | | --------- |
| Date | | Signature |
+------------+---+-----------+
|Post |
+------------+---+-----------+

	
waeup.kofa.browser.pdf.normalize_signature(signature_tuple)[source]¶
	Normalize a signature tuple.

Returns a tuple (<PRE-TEXT>, <SIGNATURE>, <POST-TEXT>) from
input tuple. The following rules apply:

(pre, sig, post) --> (pre, sig, post)
(pre, sig) --> (pre, sig, None)
(sig) --> (None, sig, None)

Also simple strings are accepted as input:

sig --> (None, sig, None)

If input is not a tuple nor a basestring or if the tuple contains
an invalid number of elements, ValueError is raised.

	
waeup.kofa.browser.pdf.sig_table(signatures, lang='en', max_per_row=3, horizontal=None, single_table=False, start_row=0, landscape=False)[source]¶
	

	
waeup.kofa.browser.pdf.signature_row(signatures, start_row=0, horizontal=None, max_per_row=3)[source]¶
	

	
waeup.kofa.browser.pdf.vert_signature_cell(signature, date_field=True, date_text=u'Date:', start_row=0, start_col=0, underline=True)[source]¶
	Generate a table part containing a vertical signature cell.

Returns the table data as list of lists and an according style.

	signature:
	a signature tuple containing (<PRE-TEXT, SIGNATURE-TEXT, POST-TEXT>)
	date_field:
	boolean indicating that a ‘Date:’ text should be rendered into this
signature cell (or not).
	date_text:
	the text to be rendered into the signature field as ‘Date:’ text.
	start_row:
	starting row of the signature cell inside a broader table.
	start_col:
	starting column of the signature cell inside a broader table.
	underline:
	boolean indicating that the signature cell should provide a line on
top (True by default).

Vertical signature cells look like this:

+------------+
|Pre |
+------------+
|Date: |
| |
+------------+
| ---------- |
| Signature |
+------------+
|Post |
+------------+

 Navigation

 	
 index
	
 modules |
	
 next |
	
 previous |
	WAeUP.Kofa 1.8.2.dev0 Documentation »
	Contents »
	Developer Handbook »
	API »
	browser – Viewing Components Package »

 © Copyright 2011, WAeUP Team.
 Created using Sphinx 1.3.5.

